

    
      
          
            
  
Welcome to Biohansel’s Read the Docs!

Currently debating on changing Subtype to Genotype in all outputs and as such, they are synonymous for biohansel in the current version (2.4.0) and in this manual

Biohansel genotypes clonal microbial whole-genome sequencing (WGS) data using SNV targeting k-mer genotyping schemes.

This tool works on genome assemblies (FASTA files) or reads (FASTQ files)! Accepts Gzipped FASTA/FASTQ files as input!

Biohansel includes 33 base-pair k-mer SNV genotyping schemes focused on Salmonella enterica subsp. enterica serovars. K-mers can be any length as long as they are a odd number.

Currently, there are subtyping schemes for the following Salmonella serovars:


	Heidelberg


	Enteritidis


	Typhimurium


	Typhi



	Typhi scheme adapted from Wong et al paper titled: “An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid” [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059462/].











These genotyping schemes have been created, maintained, and/or adapted by Genevieve Labbe et al.

There is also an included Mycobacterium tuberculosis scheme that was modified from the Francesc Coll et al. paper titled:
“A robust SNP barcode for typing Mycobacterium tuberculosis complex strains” [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166679/]
for biohansel use by Daniel Kein.

Code is available on GitHub under https://github.com/phac-nml/biohansel.
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Usage

Biohansel genotypes clonal microbial whole-genome sequencing (WGS) data using single nucleotide variant (SNV) k-mer genotyping schemes.

SNV k-mer genotyping schemes included in biohansel are currently focused on Salmonella enterica enterica serovars and
include SNV schemes for serovars Heidelberg, Enteritidis, Typhi, and Typhimurium developed by Genevieve Labbe et al. These schemes are
based around 33-mer k-mer pairs using the SNP to distinguish the genotype.

There is also a genotyping scheme for Mycobacterium tuberculosis includded in the latest version.

Biohansel can be installed with Conda, pip, or within an existing Galaxy infrastructure.
View the install guide of your preference for additional details.


Requirements and Dependencies

This tool has only been tested on Linux (specifically Arch Linux). It may or may not work on OSX.

These are the dependencies required for biohansel


	
	Python [https://www.python.org/] (>=v3.5)

	
	numpy [http://www.numpy.org/] >=1.12.1


	pandas [http://pandas.pydata.org/] >=0.20.1


	pyahocorasick [http://pyahocorasick.readthedocs.io/en/latest/] >=1.1.6


	attrs [http://www.attrs.org/en/stable/]














Quick Installation



With Conda [https://conda.io/docs/]

Conda is the easiest way to install and run biohansel through the use of the command line.

First, install Conda [https://conda.io/docs/] (Conda installation instructions [https://bioconda.github.io/#install-conda]).

Then, install biohansel through Bioconda [https://bioconda.github.io/] (64bit linux and MAC OSX) using the following commands:

# OPTIONAL: To create a new Conda environment input this command on terminal:
conda create -n "name of environment" python=3.6
# Then to create/activate conda environment: (*note* name of environment is what user decides to name environment)
source activate "name of environment"

# You can then install biohansel in the new environment
# To deactivate environment, input:
source deactivate

# Setup Conda channels for Bioconda and Conda-Forge (https://bioconda.github.io/#set-up-channels)
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

#Activate wanted Conda environment (base or user created)
conda activate

# Install biohansel
conda install bio_hansel

#Check installation with the following command; make sure to be in the correct environment
hansel -h
#This will display the usage statement





Remember to activate the Conda environment that biohansel is installed into each time you want to run it after opening a new terminal window
or you will find that the hansel command does not exist.



With pip [https://pip.pypa.io/en/stable/quickstart/] from PyPI [https://pypi.org/project/bio-hansel/]

Install biohansel from PyPI [https://pypi.org/project/bio-hansel/] with pip [https://pip.pypa.io/en/stable/quickstart/]:

pip install bio_hansel





This will install biohansel along with the required dependencies.

Check that installation is correct with the command:


hansel -h
#This will display the usage statement.










With pip [https://pip.pypa.io/en/stable/quickstart/] from Github

Install the latest master branch version directly from Github:

pip install git+https://github.com/phac-nml/biohansel.git@master





Check that biohansel is working with the command:


hansel -h
#This will display the usage statement.










Install into Galaxy [https://galaxyproject.org/] (version >= 17.01)

Galaxy admins install biohansel from the main Galaxy toolshed (tutorial [https://galaxyproject.org/admin/tools/add-tool-from-toolshed-tutorial/]):

https://toolshed.g2.bx.psu.edu/view/nml/biohansel/ba6a0af656a6

Users can download and set up their own instance of Galaxy following the get Galaxy tutorial [https://galaxyproject.org/admin/get-galaxy/] and then install biohansel from the toolshed as an admin using the admin instructions linked above.



Input Data

Biohansel uses genome assemblies (FASTA files) or raw reads (FastQ files) from WGS data as an input.
It also accepts these files as their Gzipped FASTA/FASTQ formats. Genomes can be fully assembled or a collection
of contigs when analyzed without impacting the output.

SNV genotyping schemes have to be defined for biohansel to run correctly. Four schemes are currently included in biohansel and
user created schemes can be developed by creating SNV k-mer pairs in the specified FASTA format used by biohansel.
See Creating schemes for more details.

Genotype metadata schemes can be optionally added to the analysis using the -M argument and then specifying a tab delimited file in .tsv format.
The added metadata is then joined with the genotype/subtype field of the final results.
More detailed info on formatting of metadata schemes can be found in the Input section along with additional
information on all of the other input files biohansel can use.



Output Results

Output of the results generated through biohansel will be found in three .tab files in the directory that biohansel was run from
or in the Galaxy histories window after analysis is complete. The three output files include:


	tech_results.tab –> Most basic results file giving the genotype and sample coverage (fastq samples)


	results.tab –> More advanced information on the results generated including how many k-mers were found and what types.


	match_results.tab –> All k-mer information used to generate the genotype result with the positive kmers First




All outputs contain a quality control (QC) column along with a “qc_message” column that runs through qc checks to determine if
the data is consistent or has any conflicting results that the user should be aware of.

Detailed info about the results outputs and QC can be found in the output section.



Parameters

Parameters can be modified for users of both Galaxy and the command line. These can be changed based on the users need.
Modifiable parameters include:


	
	K-mer Frequency Thresholds - only apply to raw reads/.fastq datasets

	
	Min k-mer frequency/coverage (default 8, cannot lower past 8 in current build)


	Max k-mer frequency/coverage (default 1000)










	
	Quality Checking Thresholds - Important parameters for the final results of the QC columns

	
	QC: Frequency below this coverage are considered low coverage (default 20)


	QC: Min number of k-mers missing for Ambiguous Result (default 3)


	QC: Decimal Proportion of max allowed missing k-mers (default 0.05)


	QC: Decimal Proportion of max allowed missing k-mers for an intermediate genotype (default 0.05)


	QC: Overall k-mer coverage below this value will trigger a low coverage warning (default 20)










	
	Command Line Only - Parameters only available on the command line so as to not risk overworking shared Galaxy instances

	
	Max degenerate kmers before program stops to warn you of the dangers of too many kmers (default WIP)












Detailed info on biohansels parameters and their functions can be found in the parameter section or the
command line section.



Running biohansel

More detailed information is available under the Tutorial section, the input section, or the Command Line section.

A basic command to run biohansel on an assembled Heidelberg fasta file  would be:

hansel -s heidelberg -vv -o results.tab -O match_results.tab -S tech_results.tab </path/to/data_file>









          

      

      

    

  

    
      
          
            
  
Tutorial

This tutorial is for demonstrating how to run biohansel and to confirm that it is installed correctly.
For step by step installation instructions view installation home or
for quick instructions view quick install.


Testing:

This page can be used to verify that biohansel is working properly with the different interfaces (command line/Galaxy):

To follow along:

Download either the CP012921.fasta (fasta file) or the SRR2598330(fastq-dump).fastqsanger.gz (raw file)
which are the same samples in different formats:


<https://share.corefacility.ca/index.php/s/dRGOuqhDJUNeKmE> (password: biohansel)




CP012921.fasta - is an assembled sequence.

SRR2598330 (fastq-dump).fastqsanger.gz - is the raw reads file that CP012921 was assembled from.

Specific steps regarding the testing/checking that installation was successful using the sample data found above will be found within the (brackets) below each general step involved in the analysis pipeline.


Both example files are from the same Salmonella Heidelberg sample






NML - Galaxy Access (biohansel)

1. Create a new history in Galaxy and import either fasta files or raw reads files that are being analyzed into
the newly created history using any of the tools from the Get Data “Tools” section.


(For verification: find the sample data in your files, most likely in Downloads, and upload it into Galaxy using the upload file tool.)




[image: get data section of Galaxy]

2. Find biohansel on the right-hand side in the “Tools” Section: Under the Experimental Section and click it.


[image: location of biohansel in galaxy]




3. For the “Sequence Data Type” parameter, select the proper type of data (FASTA vs. FASTQ (raw)) depending upon
the type of data being analyzed


(For Verification: If you are using the Fasta file select the fasta option. If you are using the FastQ file,
select the paired-end reads data type.)




[image: sequence data]

4. For the “SNP Subtyping Scheme”, select the proper scheme corresponding to the organism in your samples.
This can currently be the included Salmonella serovars Heidelberg, Enteritidis, Typhimurium, and Typhi schemes, or the M. tuberculosis scheme, or a user created FASTA file


(For verification: select the “Salmonella Heidelberg subtype scheme”)




[image: Selecting a subtyping scheme]

5. Optionally, add a Scheme Subtype Metadata Table can be added to the analysis to be included into the end of
the results files. This file must be in the .tsv format to be added properly or the analysis may fail
(.csv may work on Galaxy but if the analysis fails, change it to .tsv).

[image: meta data addition]

6. Click on the eye ([image: collapseble eyes]) to expand or collapse the modifiable parameters to allow adjustments to
them to suit your needs. The defaults work well for most analyses but in some situations it may be beneficial
to change them. Detailed information on the parameters that Galaxy allows modification to and what they do can be
found in the parameters section


(For verification: leave all of the parameters as their defaults.)




[image: Parameters that can be changed but do not need to be changed in most analyses]

7. Execute your inputs and analyze your data by clicking the large execute button to produce three results files: tech_results.tab, match_results.tab and results.tab.

The normal execution time is 0.5 - 60 seconds depending on what the inputs were. Don’t be alarmed if it does take longer as it depends on the available computing power and the size of the dataset given (especially on Galaxy).


(For verification: verify that the output was correct by comparing to the Verification Results.)




8. The .tab files can be opened in excel or another spreadsheet program to view the results of the analysis. On Galaxy, the results can be looked at by clicking on the view data eye in the history section.

[image: Galaxy Results files from biohansel]

**For more detailed information on the different types of outputs that are produced by biohansel go to: Output [https://bio-hansel.readthedocs.io/en/readthedocs/user-docs/output.html]



Running biohansel on Terminal (MAC) using Conda


Steps

1. Go to Quick Installation instructions [https://bio-hansel.readthedocs.io/en/readthedocs/user-docs/usage.html] or
Full installation instructions (exact same with different details to them) and
download Miniconda from the website following the instructions corresponding to your given iOS.

Skip to step 6 if you have already installed biohansel.

2. After installing Conda, go on terminal and create a conda environment by inputing this command:

conda create -n <name of environment> python=3.6

# For example to create an environment called biohansel the command would be:
conda create -n biohansel python=3.6





3. It will ask you to proceed (y/n) afterwards, type in: y

4. Then activate your environment by typing:

source activate <name of your environment>

# If you called your environment biohansel, the activate command would be:
source activate biohansel

# Source activate will activate the environment. You know that it is active if you see
# the environment name beside your name.





5. Now install biohansel onto conda environment by inputting:

conda install bio_hansel

# Make sure to always activate the environment that biohansel was installed into
# otherwise it will not run.





6. To confirm that biohansel has been installed in the environment, input:

hansel -h
#this command shows the numerous types of commands you can use in for biohansel

# If there is any issue confirm that, if using conda, you are in the correct environment
# that you installed biohansel to.

# If you installed biohansel with pip and are having issues; confirm that biohansel
# was installed into the correct python (Should be python 3.6 or higher) with the command:
# which python





Additional troubleshooting can be found in the installation page. Go to command-line [https://bio-hansel.readthedocs.io/en/readthedocs/user-docs/command-line.html] to see detailed descriptions of all of the arguments that can be used to run biohansel. Quick descriptions of the arguments are found below.

[image: command line commands]

Please click the image to view the command

7. Figure out what directory you are in (which is most likely User/”name of user) using the following command:

pwd
# pwd = "print working directory" and will show which directory you are currently in.





8. Using the terminal window, change directories to the directory/folder that contains the data
that you want to analyze. This can be done with the following command:

cd <path/to/file>





Example: if the file was in User/name of user/Downloads you input:

cd User/name of user/Downloads
# cd = change directory command





9. Once you’re in the directory where your data is stored, biohansel can be used to analyze
the data in the directory using the following command:

hansel -s heidelberg -vv -o results.tab -O match_results.tab -S tech_results.tab <Name of data file>

# If you downloaded the CP012921.fasta, then you would input CP012921.fasta at the end of the command
# If working with the raw fastq data, you may need to unzip the file to get the analysis to work.
# To do this use the following g-zip command without the # before it:
# gzip -d <file>







Arguments

The other arguments needed to run the command are as follows:

-s -> this command is to specify the scheme used by biohansel for the analysis being done
(“enteritidis”, “heidelberg”, “typhi”, “typhimurium”, and “tb_lineage” are the built in schemes right now).
You can also use this to specify a custom scheme and then the path to that scheme.

-vv -> this command is used to display more information from the terminal while the command is running.
It is not necessary for an analysis but can be extremely useful. Can be added as just -v to show warnings.

-t or –threads <#_CPUs> -> the number of parallel threads to run analysis

-o -> this command is used to specify the main results file output by biohansel called results.tab
(You can change the name to whatever you want. Remember to add .tab)

-O -> this command is used to get the more detailed results output known as match_results.tab
(You can change it to whatever name you want. Remember to add the .tab)

-S -> this command is used to output the simplest results file generated by biohansel called tech_results.tab
(You can change name to whatever you want. Remember to add .tab)

You do not need all of the arguments shown to run the command. You may only choose to look at one or two of the
three output files and as such can leave off the file you do not wish to create to save computing power.

After you have defined all of the necessary arguments, input the name of the file at the end of the command and
press enter to start the analysis. Normal analysis times will take anywhere from 0.5 - 60 seconds depending on the file
size and previous assembly of contigs (if any).

10. The result files that you specified with the correct arguments and their names should be in the directory
that the command was run from. For example if you ran the command from a directory called “data”, the results would
be located in the “data” directory.

If running the example files, verify that the output was correct by comparing to the Verification Results tables.




Verification Results

For CP012921.fasta (fasta file):

Fasta match_result.tab:

[image: fasta match results]

Fasta tech_result.tab:

[image: fasta tech results]

Fasta result.tab:

[image: fasta results]

For SRR2598330(fastq-dump).fastqsanger.gz (raw file):

Raw/FASTQ match_result.tab:

[image: raw match]

Raw/FASTQ tech_result.tab:

[image: raw tech results]

Raw/FASTQ result.tab:

[image: raw results]





          

      

      

    

  

    
      
          
            
  
Input

This section describes the main input files that are needed to run biohansel along with the various
methods available to analyze datasets using the tool.

The three input files are:


	The WGS data/assembled genome added as a FASTQ or FASTA file


	A chosen genotyping scheme (heidelberg, enteritidis, typhimurium, typhi, or tb_lineage) or a user-created custom genotyping scheme (FASTA).




More info in the genotyping schemes section.


	A metadata table (Optional) in CSV or TSV (tab-delimited) format to add additional information to the results. A .tsv file is highly recommended as csv files are currently unstable




More detailed information on the output of what each results file contains can be found in the Output section.


Types of Analysis


Analysis of a single FASTA file

Analysis of a single FASTA file would be run on a sample that has already been assembled into contigs
through another program/tool. To run the command, the arguments that must be specified include:


	-s “scheme” where the scheme defined can be one of the five built in schemes or a user created one (FASTA format)


	Any combination of the results delimiters and names (file names can be changed but must be included after the argument):



	-o results.tab


	-O detailed_results.tab


	-S simple_summary.tab









	The name of the FASTA file at the end of the command




An example command for the analysis of a single FASTA file called SRR1002850.fasta would look like:

hansel -s heidelberg -vv -o results.tab -O detailed_results.tab /path/to/SRR1002850.fasta





Or, if you have already changed to the directory containing the dataset, you can use the following
command where you do not have to specify the path to the data:

hansel -s heidelberg -vv -o results.tab -O detailed_results.tab SRR1002850.fasta





The output of the biohansel tool can be found in the directory that the command was run from.



Analysis of a single FASTQ readset

Analysis of a single FASTQ readset would be run on raw sequencing data. To run the command, the arguments that must be specified include:


	-s “scheme” where the scheme defined can be one of the five built in schemes or a user created one (FASTA format)


	Any combination of the results delimiters and names (file names can be changed but must be included after the argument):



	-o results.tab


	-O detailed_results.tab


	-S simple_summary.tab









	
	The name of the FASTQ file(s) at the end of the command

	
	For single-end reads include the one file


	For paired-end reads include: -p followed by both files one after the other












An example command for the analysis of a single single-end reads run dataset would look like:

hansel -s heidelberg -vv -t 4 -o results.tab -O detailed_results.tab SRR5646583.fastqsanger





An example command for the analysis of a single paired-end reads run dataset would look like:

hansel -s heidelberg -vv -t 4 -o results.tab -O detailed_results.tab -p SRR5646583_forward.fastqsanger SRR5646583_reverse.fastqsanger







Analysis of all FASTA/FASTQ files in a directory

Analysis on all of the FASTA/FASTQ files in the specified directory. This will run on all FASTA/FASTQ files
in the directory. Be sure that there are no miscellaneous files that may unnecessarily increase analysis time or
lead to unneeded errors.

Biohansel will only attempt to analyze the FASTA/FASTQ files within the specified directory and will
not descend into any subdirectories! As such, make sure all of the data to be analyzed is in the same
location or organized in a way that suits the project.

Analysis of all of the sequencing files in a directory must include following the arguments to run properly:


	-s “scheme” where the scheme defined can be one of the five built in schemes or a user created one (FASTA format)


	Any combination of the results delimiters and names (file names can be changed but must be included after the argument):



	-o results.tab


	-O detailed_results.tab


	-S simple_summary.tab









	-D /path/to/directory_with_data




Optionally, you are able to specify the number of threads for an analysis with the
–threads argument. If you do not specify this, it will default to 1.


	–threads <#_cpu> to specify the number of CPUs wanted to run the analysis.




An example of a general command for the analysis of a directory of FASTA/FASTQ files:

hansel -s heidelberg -vv --threads <n_cpu> -o results.tab -O detailed_results.tab -D /path/to/fastas_or_fastqs/





The chosen output files can be found in the directory that the command was run from or that was specified in the output
names and it will contain data from each of the analyzed files run by biohansel.

Ex. If I was running an analysis on samples stored in my “data” directory found in the path science/user/data,
I could cd to my user folder and run the following command:

hansel -s heidelberg -vv --threads 1 -o results.tab -O detailed_results.tab -D data/








Genotype Metadata Table (Optional)

Optionally you can select a genotype metadata information table to include genotype metadata along with the genotyping
results created with biohansel. Metadata tables must be in a tab-delimited format to correctly work. The file extension
for your metadata table should be .tsv if at all possible or you may end up with an error and no analysis results.

To add a metadata table to the analysis you will add the argument -M <metadata_scheme.tsv> to any other analysis command.
There are no requirements for the number of columns or the content of each of the columns on the metadata table so
long as the first column is labeled as “subtype”.

A command that incorporates the -M command for analysis would be structured following the previously established requirements and looks as follows:

hansel -s heidelberg -M <metadata_scheme.tsv> -vv -o results.tab -O detailed_results.tab <data>





The biohansel results table will be joined with the genotype metadata table based if a genotype on the metadata
table matches one on the results. If a match occurs, the metadata of that genotype will be added to the table
at the end of the results.tab and tech_results.tab results files.

Example metadata table (called metadata.tsv):









	subtype

	Clade

	Source

	Symptoms





	1

	I

	Geese

	Death



	1.1

	I

	Moose

	Burns



	2.2.1.1.1

	II

	Mouse

	Boils



	2.2.2.2.2.1

	IIa

	Human

	Rash






*When naming a metadata table make sure there are no spaces or parentheses and that its extension is .tsv or the analysis may fail.*

The added metadata will appear at then end of the results.tab and the simple_summary.tab files.

Example: simple_summary.tab without metadata added:









	sample

	subtype

	qc_status

	qc_message





	CP012921

	2.2.3.1.2

	PASS

	





Example: simple_summary.tab with metadata:












	sample

	subtype

	qc_status

	qc_message

	Clade

	Source

	Symptoms





	CP012921

	2.2.3.1.2

	PASS

	
	I

	Geese

	Rash






You can add metadata to the analysis with Galaxy by uploading either a .tsv or a .csv
file to your history and specifying that you want it used in the analysis. A .tsv file is recommended.





          

      

      

    

  

    
      
          
            
  
Genotyping Schemes

This section will cover the genotyping (previously called subtyping) schemes used by biohansel for Salmonella enterica
subspecies enterica serovar Heidelberg, Typhimurium, Typhi, and Enteritidis. Biohansel also includes a genotyping scheme for
Mycobacterium tuberculosis. Along with these 4 schemes included in biohansel, this section will provide you with
in depth information on how to create a custom genotyping scheme.

The genotyping schemes developed and used by biohansel are specifically designed fasta files that contain many k-mer pairs (split k-mers)
of the same length. These k-mer pairs are given a positive (e.g. inclusive) or negative (e.g. exclusive) label for the genotype that
they correspond to, allowing analysis to occur through biohansel to determine what the samples genotype is based on the scheme.
If you want to see the exact structure, you can click on K-mer_Structure for the exact formatting. k-mers must be formatted
this way for biohansel to run correctly. Depending upon which of these k-mers match the target, the final genotype will be obtained.

The k-mer genotyping process works due to the clonal (very little genomic change/evolution occurs over time) nature of the
serovars found in Salmonella enterica or other clonal pathogens. This clonal nature allows SNPs to be mapped to
different genotypes that evolved from different lineages over the expanse of a few years (e.g. recent clonal expansions).
Salmonella serovars are good candidates for this type of genotyping as it is hard to determine a genotype in the lab through
conventional means due to all genotypes being genetically similar within the most prevalent Salmonella serovars.

This process can be used to genotype other clonal pathogens with biohansel as soon as a genotyping scheme is created and validated for them.


Heidelberg, Typhi, Typhimurium, and Enteritidis Genotyping Schemes

The Heidelberg genotyping scheme included with biohansel is in version 0.5.0 and features a set of 202 33-mer pairs with a
single nucleotide polymorphism (SNP) distinguishing between the positive and negative condition in of each pair.
This distinction between pairs allows for the identification and classification of different genotypes of Heidelberg serovars
based on the number and location of SNPs in a WGS sample that match to the genotyping schemes pairs.

The Enteritidis scheme (version 1.0.7) features
a similar set of 317 33-mer pairs that follow the same style as the Heidelberg scheme to classify and identify different
enteritidis serovar genotypes. It specifies one of 117 genotyoes with its scheme.

The Typhi genotyping scheme (version 1.3.0) is a new scheme that follows a similar structure to the other two schemes. It features a
classification list of 75 k-mer pairs which define 75 possible genotypes. This scheme was adapted by Geneviève Labbé from a publication
by Vanessa Wong et al. titled: “An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid” [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059462/], and more recent publications by Britto et al. [https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006408], Rahman et al. [https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008036], and Klemm et al. [https://mbio.asm.org/content/9/1/e00105-18]
When running the Typhi scheme, the previously published hierarchical codes are automatically appended to the results to allow
better comparison.  In addition to the published genotyping codes, metadata relevant to each genotype is provided to the user
based on an analysis of ~8,100 public S. Typhi datasets from the NCBI SRA (manuscript in preparation). The genotype metadata includes
the number of WGS datasets found to be part of this genotype out of 5,088 S. Typhi isolates (under the header “count”) which passed QC
and had sufficient source data provided; as well as the earliest year and latest year in which a sample corresponding to this genotype
was collected (under the headers “earliest_year_collected” and “latest_year_collected”), and the most predominant geographic source for
this genotype (under the header “top_geo_loc_name”).

The Typhimurium genotyping scheme (version 0.5.5) is a scheme that features 430 k-mer pairs and follows the same characterisitics of the other schemes above.
This scheme is more robust at detecting SNPs and contamination as it has more k-mers for each genotype leading to it being a more
specific and streamlined scheme. This scheme specifies for 120 different genotypes.

Changes to schemes occur as new classifications are made and then the schemes are updated on GitHub and Galaxy for the use of others.

The Heidelberg, Enteritidis and Typhimurium schemes were developed by Geneviève Labbé et al.



Mycobacterium tuberculosis (TB) scheme:

Biohansel now also features a TB scheme developed by Daniel Kein that was adapted from a publication by Francesc Coll et al. titled:
“A robust SNP barcode for typing Mycobacterium tuberculosis complex strains” [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166679/]
This scheme currently features a set of 62 33-mers that define 62 different genotypes.



Genotype Classification System

The genotyping classification system created for biohansel follows a nested hierarchical approach to allow relationships between genotypes
to be established based on which SNPs they contain. The format designed for the classification system supports
modification of the existing genotyping scheme to recognize new branches of new genotypes as they are fit into the
existing classification system. The designed system works as a way to easily link outbreak origins and look at places
further up the hierarchy where interventions can be done and monitored based on what genotype was found where.

The scheme and process that is used to genotype Salmonella enterica subspecies Heidelberg can be seen below:

[image: Genotype scheme chart]

Following the scheme, each positive k-mer match leads to a more specific classification of the genotype with the first matches
determining which lineage the isolate is from (1 or 2 in this case). After the main lineage is determined, the genotype is
determined based on all of the matching positive k-mers found in the sample as it follows along the path to the specific genotype.
It is important that all/most positive and negative k-mers match a spot in the sample to allow correct genotyping and not generate errors!

It is important to note that for a given genomic SNP position defining a lineage, the “positive” (e.g. inclusive) k-mer means that
the SNP base is present “inside” the lineage for all of that lineage and nested ones. The “negative” (e.g. exclusive) k-mers include
the SNP bases present “outside” of that lineage such that that specific SNP is not found in any of the hierarchical lineages.

The Output section contains more details on the errors that can be run into when running a sample.



Creating a Genotyping Scheme

Creating a statistically valid, representative, and well established genotyping/subtyping scheme for biohansel is a large task.
Once a scheme is established however, it is easy to modify the scheme to fit the needs of the research and allow for
new classifications as they are discovered. When creating a genotyping scheme, keep in mind that the organism should be clonal,
meaning that the majority of the target pathogen population should belong to a recent clonal expansion, or should represent a pathogen with
a very slow genetic evolution (e.g. M. tuberculosis).  BioHansel functions by finding exact matches to the k-mers defined in the scheme,
so populations with a high genetic diversity will not have a sufficient number of k-mer pairs (or split k-mers) that are conserved across
the whole population, leading to entire lineages that could fail BioHansel QC. All of the k-mers pairs identified and created for the
genotyping scheme should be found in all or almost all the isolates for biohansel to work correctly. If the genetic diversity of the target
population is higher (e.g. >3,000 SNPs across the core genome between isolates), a wgMLST or cgMLST scheme would be more appropriate
than a SNP-based scheme, as is the case for Salmonella serotyping.

To create a well constructed genotyping scheme the steps below should be followed.
However, you do not need to follow the steps to create a genotyping scheme and you can create a quick one to identify certain k-mers
instead. As long as the k-mer scheme is followed, the k-mers and their locations can be identified using the match_results.tab file.


Detailed Steps

The detailed steps to create a well structured and accurate genotyping scheme are as follows.
These steps were used to create the Genotyping Schemes included in biohansel and have been shown to create accurate results
from the test samples run. The steps are:


	Generate a large dataset that is representative of the organisms population being defined. For best results make sure to:





	Remove outliers


	Remove poor quality data


	de-duplicate the dataset





	Choose an available reference genome for the organism (ideally a closed/complete genome).




3. Subdivide the population into closely related clonal groups using MASH followed by SNP analysis.
This can be done with any Mash clustering tool. An example used to create the
included schemes is Mash version 2 [https://mash.readthedocs.io/en/latest/].
The SNP analysis can be done with a number of tools including SNVPhyl [https://snvphyl.readthedocs.io/en/latest/],
parsnp [https://github.com/marbl/parsnp], snippy [https://github.com/tseemann/snippy], or any tool that you prefer.


	Aim for groups that are less than 3,000 SNPs between strains over more than 80% of the reference genome




[image: results of mash analysis]

Above is an example of a sorted all against all MASH result based on the matching-hashs column. This result is to see
which strains are the most closely related and confirm that all of the samples are similar enough to be able grouped together for a scheme.

[image: results of parsnp analysis]

Above is an example of a SNP analysis using parsnp and Gingr. These tools can be used to visualize a p
hylogenetic tree along with providing a multiple sequence alignment where the SNPs can be easily viewed.


	Remove rare outliers from the dataset





	these are detected by SNP matrices, number of unaligned bases, number of heterozygous sites, number of bases with low coverage, etc.


	These rare outliers are from suspected poor quality WGS data, mixed culture samples, or large recombinant regions (phage or transposons).





	De-duplicate the data once again by removing strains that are nearly identical to each other. This can be defined as:





	Strains that are 0-2 SNPs apart over more then 80% of the reference genome


	Strains that MASH cluster with a distance of ≤ 0.001




[image: showing based on the mash results which data is too similar to one another]

According to the MASH clustering result shown above, we have to pick one of STR32523/STR666 and one of
STR2131/STR2221 as they are too similar to differentiate properly.

6. Create a Maximum Likelihood (ML) phylogenetic tree from the SNP derived reference assembly of the strains to
the reference genome. Here you are looking for:


	Regions that are conserved across the whole population of interest such that the SNPs in the areas are found in 99.5% of all isolates


	SNPs that are at least 20 base pairs from other SNPs or indels



	The 20 bases on either side of the SNP should be conserved in at least 99.5% of isolates!











This can be done with any tool that creates a ML phylogeny. Examples of tools previously used include: SNVPhyl, parsnp,
and MEGA [https://www.megasoftware.net/webhelp/helpfile.htm#contexthelp_hc/hc_maximum_likelihood_ml_.htm].


	Divide the ML tree into main lineages and sub-lineages according to the shape of the tree to allow users to identify





the main clonal expansions. When doing this make sure that:





	Tree branches are at least 2 SNPs long




	The longer the branch, the better, as there will be more SNP positions to choose from for defining that genotype.







You can look at a SNP file generated previously to look at the SNPs from regions that don’t feature any indels
and are isolated by at least 15 (preferably 20) nucleotides on each side.








If wanted, you can lower the number of SNP sites to be evaluated into the scheme by removing all
of the SNPs that are present in less then 5 isolates and then remaking the tree. The aim is to have at
least 5-10 strains per sub-lineage, to keep the scheme focused on clonal expansions.

[image: showing the lineages defined through the first round of analysis]

Above is the ML phylogeny previously generated with lineages and sublineages applied to the strains. These are a preliminary
delegation and can change in the next steps. However, it is a good idea to set up lineages now and edit them as better
designations are designed.


	Create a neighbour-joining tree and root it using a distantly related sequence or a pseudo sequence to





determine where the root of the tree should be.




9. Give main lineages and sub-lineages determined previously hierarchical codes based on how they cluster
in the NJ tree and the SNPs that make up each sequence.

[image: example of a snp extraction]

Based on the SNPs seen in the .vfc file and the rooted tree, hierarchical codes are assigned.
The root is in an odd spot in this example as it was determined mostly based off of the SNPs seen in the parsnp tree.
It is important to verify that the root is correct with an outgroup as the biohansel scheme needs to be strictly hierarchical.

10. Extract from the SNV table or VCF file the canonical SNPs that define the genotype and differentiate
it from other strains using FEHT [https://github.com/chadlaing/feht] which can be installed into bioconda or galaxy.

The installation instructions are found in the link but if you are using bioconda for biohansel,
the easiest thing to do is go to the wanted environment and install FEHT there with the following commands:

conda activate <name of environment to install feht to>

conda install -c bioconda feht





FEHT needs the following specific files to run this process:


	A metadata file with the hierarchical codes


	A SNV table or a VCF file that defines the genotype


	The metadata file will be the info file and the VCF file will be the datafile that is needed for Feht to run.




Make sure that the isolate names match exactly and both files use a tab delimiter

The metadata file should look as such and be in a .tsv format:











	Strain_name

	Level_0

	Level_1

	Level_2

	Level_3

	…





	SRR1242421444

	1

	1.1

	1.1.2

	1.1.2.3

	…



	SRR1242422313

	2

	2.2

	2.2.2

	2.2.2

	…






The VCF table should look as such and also be in a .tsv format:









	
	reference

	SRR1242421444

	SRR1242422313





	122123

	0

	1

	0



	234142

	0

	0

	1



	341251

	0

	1

	1







	Extract the exact matches to the query using the ratioFilter in FEHT by switching “-f” to “1”.




This is done as the FEHT program performs an all-against-all comparison of all the genotypes, one column
(one hierarchy) at a time and we only want the exact matches.

12. From this output, we want to extract the genotype against all else results by searching for the ! sign
(ex. search !2.2 instead of 2.2) and compile these results into a new .tsv file with the following information:









	Genotype

	SNP Location

	Positive Base

	Negative Base





	1

	395

	A

	G



	1

	2998

	T

	G



	1.1

	29231

	A

	G



	1.1.1

	77889

	T

	C






The positive base is the base found in the middle of the k-mer and it corresponds to the genotype of the sample.
The negative base is the base found in all other samples. Both are equally important for the program to function
properly so it is essential that they are properly defined.

13. Create the genotyping scheme with all of the information obtained. The SNP column shows the exact position
that the SNP is found in the reference genome. This spot can be made into a 33-mer k-mer used in the scheme by
recording 16 bases on each side of the SNP such that the SNP is in position 17 of the 33-mer.

A python script can be written to do this such that it creates 33-mers from the reference genome. Keep in mind that most of
them will be of the negative variety and the positive k-mer pair will need to be created in the next step.

14. Finish the genotyping scheme by making sure that each carefully crafted 33-mer has a positive and negative pair
attached to the correct genotype. This can be done also using a script (currently being worked on) or the following method:



	Paste the 33-mers into the correct location in the FEHT filtered output spreadsheet next to the corresponding SNPs.















	The 33 bp sequences are expanded using TextWrangler (replace [A,T,C,G] by the same base+tab), then pasted back into excel, in 33 adjacent columns.















	Replace the 17th column (middle one) with the positive base column, and collapse the 33 columns into one by removing the tabs in text wrangler.















	Paste back into Excel as the list of “positive k-mers”.















	Replace the middle column by the negative base column and repeat the same procedure to obtain the list of “negative k-mers”.













15. Create a FASTA file following the K-mer structure found below. Make sure that the headers and sequences are on
separate lines. The order of the files in the scheme does not matter for biohansel input.

It is important that the K-mers follow the exact format or the analysis will generate errors and potentially fail.



K-mer_Structure

The structure k-mer pairs (split k-mers) are structured as such and the headers must follow the following format to work correctly:


For the Positive k-mers:




>[SNP position in ref genome]-[genotype]

AAATTTCAGCTAGCTAGCTAGCAATCACTGATC







For the Negative k-mers:




>negative[SNP position in ref genome]-[genotype]

AAATTTCAGCTAGCTATCTAGCAATCACTGATC






An example with real data:


>2981-2.2.3.1.4

ACTGCCGCCGGAGCCGTGTGAAAATATTGTTTA







>negative2981-2.2.3.1.4

ACTGCCGCCGGAGCCGCGTGAAAATATTGTTTA






***The first distinction between genotypes 1 and 2 (or potentially more genotypes) does not have a negative condition
and instead moves samples into one of the two classes established. The setup for the k-mers is similar to the other
k-mers shown above and looks like such:


>717-1

ATGCAGAGTCAGTCAGATCAACATGCACCCACA







>717-2

ATGCAGAGTCAGTCAGTTCAACATGCACCCACA






Notes


	The k-mer length can be variable




The length of the positive and negative k-mers within a pair does not need to be the same.


	BioHansel can work using a list of positive k-mers exclusively




In that case however, the user will not benefit from the quality controls that are performed in BioHansel using k-mer pairs.


	The target canonical SNP can be located anywhere within the k-mer




The target SNP does not need to be in the center of the k-mer sequence.


	Since the tool relies on finding exact k-mer matches, the positive k-mer sequence could in theory target an indel sequence




The target k-mer sequence needs to be conserved in a lineage and absent in the rest of the pathogen population. If there is an indel
sequence that is conserved in a lineage and present only in that lineage, the corresponding negative k-mer should be found in the rest
of the population and absent in the lineage containing the positive k-mer indel sequence (for example, the negative k-mer sequence could
be spanning the target insertion or deletion site in the genome in the rest of the population, if that genome region is unchanged across
the rest of the population).

16. Test the created scheme by running biohansel to verify that all of the expected positive target sequences are present in the
corresponding strains. Eliminate targeted k-mers from the scheme that do not work well and verify that the targeted k-mers pairs created
are present in most of the dataset. Finally test the scheme on a de novo assembly along with raw Illumina sequencing reads to make
sure it holds true for both.






          

      

      

    

  

    
      
          
            
  
Degenerate Base Expansion

Biohansel allows users to input custom schemes containing IUPAC degenerate bases [https://www.bioinformatics.org/sms/iupac.html] in their kmers.
These degenerate bases allow for increased flexibility for kmer matches but can come at the cost of computing power.

In this section, we will look at the how to use degenerate bases and where to be careful when dealing with degenerate bases in
your biohansel genotyping schemes.


Including Degenerate Bases in k-mers:

Any of the degenerate bases can be added anywhere in the genotyping schemes k-mers. Once this happens, when the code is run, the k-mers
are expanded into all possible combinations of normal DNA bases (A,G,C,T). These degenerate bases can be anywhere in the k-mer so long as there is
still a SNP separating the pair, and, if they are not in the SNP location the degenerate base matches in both k-mers of the pair.


Degenerate Base as a SNP:

Example k-mer pair with a single degenerate base as the SNP separating the pair. Here the SNP is bolded to try to make it easier to see. Remember
that biohansel scheme k-mers can be any length, but should be long enough to be specific for a particular genome location:


>1231-2.2

TADCT




>negative1231-2.2

TACCT



The k-mer with the degenerate base would expand into three separate k-mers for the same genotype at the same position. Once the code was ran,
these three positive k-mers would only count as 1 k-mer for the results outputs.

Expanded k-mers where if any of the positive k-mers are found in this set, you have genotype 2.2:


>1231-2.2

TAACT




>1231-2.2

TATCT




>1231-2.2

TAGCT




>negative1231-2.2

TACCT





Multiple Degenerate Bases Elsewhere in the K-mer:

As stated, you can have any number of degenerate bases in the SNP scheme k-mers. Here is an example of a pair containing
two degenerate bases not in the position of the SNP. Here the degenerate bases are bolded along with their expansions:


>1231-2.2

CTRACTW




>negative1231-2.2

CTRCCTW



This pair would expand into 4 different k-mers for each pair or 8 new k-mers in total. For the positive ones:


>1231-2.2

CTAACTA




>1231-2.2

CTAACTT




>1231-2.2

CTGACTA




>1231-2.2

CTGACTT



And for the negative ones:


>negative1231-2.2

CTACCTA




>negative1231-2.2

CTACCTT




>negative1231-2.2

CTGCCTA




>negative1231-2.2

CTGCCTT



As you can see, they are still only separated by the A SNP in the positive k-mer and the C SNP in the negative one.
Now there are 4 different pairs, with 8 separate sequences making up these 4 pairs. This expanded all from the
original pair and all of these new pairs would check for genotype 2.2 at position 1231.

In this example, there would end up being a total of 16 different k-mers due to the reverse compliment also being input into biohansel.




Unchecked Expansion of K-mers:

When calculating the number of k-mers that are being created by a k-mer pair, the IUPAC DNA Nucleotide codes can be thought of
as the number of possibilities that they expand to and not what they represent as seen below:


A, G, C, T = 1




R, Y, S, W, K, M = 2




B, D, H, V = 3




N = 4



Using this, we can take any nucleotide k-mer we want and calculate the number k-mers that are being created.

Using the values above, we can substitute the nucleotide with a number and find the number of k-mers created.

Example sequence is “ACGTAGC”:


(A)(C)(G)(T)(A)(G)(C)

(1)(1)(1)(1)(1)(1)(1) = 1



If we had a sequence with degenerate bases, we will start to see how fast the number of k-mers can increase.

Example sequence is “ACTNNANNTTA”


(A) (C) (T) (N) (N) (A) (N) (N) (T) (T) (A)

(1) (1) (1) (4) (4) (1) (4) (4) (1) (1) (1) = 256



This example is an example how having only 4 ‘N’ nucleotides expands our one sequence into 256 different ones.

These 256 k-mers aren’t including the second part of the pair that this sequence has to belong to and as their is a SNP of “A” in the middle,
the other k-mer must also contain those 4 ‘N’s. This means that there are 512 k-mers being used for just this pair alone.

Even then, the 512 k-mers for the positive and negative positions become a total of 1024 different k-mers due to the need to
take into account the reverse compliment of all of the sequences.

To put this in perspective, the Heidelberg SNP genotyping scheme contains 202 pairs with 404 sequences and once ran, this is expanded
to 808 sequences by biohansel due to the reverse compliment input. The whole genotyping scheme has less k-mers than a single SNP pair in this case.

The goal is the remember that even a small number of degenerate bases can lead to a large number of k-mers and longer run times.
‘N’ is the extreme however and if you were creating a scheme with only the “2” value degenerate bases (ex. ‘R’), then you could have
8 degenerate bases for a single pair and end up with the same 1024 expanded k-mers from the pair.

* The take away here is to be careful when including degenerate bases in your scheme. The more degenerate bases included, the
more kmers are that are produced by expansion, the slower the run time, and the more RAM is needed to run the sample.



Benchmarking Degenerate Bases


Expand Degenerate Base Module

More degenerate bases = More K-mers = Slower Run Times

In this section we are going to look at the speed of the expand base module and the code itself for different numbers of k-mers.

Here is the speed of running the expand degenerate bases module (not biohansel itself) on 1 core using pythons timeit:








	K-mer Sequence

	Max K-mers Produced

	Time



	A

	1

	1.59 microsec



	N

	4

	1.79 microsec



	NN

	16

	2.47 microsec



	NNN

	64

	5.61 microsec



	NNNN

	256

	17.50 microsec



	NNNNN

	1024

	68.30 microsec



	NNNNNN

	4096

	305.0 microsec



	NNNNNNN

	16384

	1.41 msec



	NNNNNNNN

	65536

	6.15 msec



	NNNNNNNNN

	262144

	26.5 msec



	NNNNNNNNNN

	1048576

	112.0 msec



	NNNNNNNNNNN

	4194394

	470.0 msec



	NNNNNNNNNNNN

	16777216

	1.950 sec



	NNNNNNNNNNNNN

	67108864

	8.930 sec



	NNNNNNNNNNNNNN

	268435456

	Died






The higher k-mers are a bit of a stretch but show how much longer the module takes PER K-MER if you are not careful.

Remember, the above chart is for a singular k-mer and does not take into account the expansion of the whole scheme.
If you had a scheme with a lot of these, it would take that amount of time for each k-mer!



Whole Biohansel Code

Benchmarking all of the biohansel code using the same input fasta file but increasing the total k-mer count each time.

Remember that the total number of k-mers if there are no degenerate bases is equal to the number of pairs multiplied by
4 to take into account two sequences per pair and the RC of each sequence.

If degenerate bases are present, it is harder to guess the number and running biohansel will tell you if you have over the default 100,000 k-mers and
allow you to set the value that you deem acceptable with the “–max-degenerate-kmers” command.








	Number of Nucleotides

	Number of Scheme K-mers

	Execution Time (sec)



	4751529

	808 –> Base Heidelberg Scheme

	0.613



	4751529

	4,394

	0.663



	4751529

	12,074

	0.721



	4751529

	36,650

	0.873



	4751529

	69,418

	0.971



	4751529

	134,954

	1.031



	4751529

	266,026

	1.502



	4751529

	528,171

	2.150



	4751529

	1,052,459

	3.269






This work was done on an assembled fasta file. Note that even with 1,000,000 k-mers, the time it takes to run biohansel is only 3 seconds.
BUT, if you’re using fastq files it is going to be much longer and they haven’t been tested for speed with expansion yet! So be careful
with large expansions on fastq files.






          

      

      

    

  

    
      
          
            
  
Output

This page describes the three different result files will be produced from running biohansel: tech results.tab, match results.tab & results.tab. The results found in these three files will be the same whether you are using the command line or Galaxy to run an analysis.








Tech Results.tab


Structure:

Tech_results.tab is the simplest output file released by running a biohansel analysis.
It contains only the sample name, genotype, and the QC status of the sample allowing this
file to be easy to interpret at the cost of not elaborating on any of the specific details of the analysis.
Found below are the columns and explanations of the columns for this output file:










	Sample

	Genotype

	Avg_kmer_coverage*

	QC_status

	QC_message



	(Sample Name)

	(Corresponding Genotypes Found)

	(average k-mer coverage of all the targets

	(PASS/FAIL/WARNING)

	(Corresponding QC message)






*Average_kmer_coverage is only found in the output when analyzing fastq files or directories with fastq files.


Sample

This column provides the names of samples that were run on biohansel



Genotype

This column gives the genotype/subtype of the sample determined by the analysis. This column can display a single positive genotype,
a list of positive genotypes, or no genotype depending on the results of the analysis. A good analysis will output the following:

[image: Correct tech_results.tab file]

If this column does not display a single positive genotype, it will show one of the two following situations:

1. Different genotypes if mixed samples are run or there is an error in a user-created scheme.
In this case, biohansel can list multiple different genotypes that were detected.

Genotype assignment

Genotype assignment uses only the identified positive k-mers and the overall genotype is determined by the most resolved
genotyping k-mer(s) identified (e.g. the k-mer(s) associated with the genotype(s) that have the highest number of hierarchical
levels).  In the case of a mixed sample, it can result in two or more genotypes being assigned, if they have the same number of
hierarchical levels (e.g.: 1.1.1 and 1.1.2; which both have 3 hierarchical levels).

Troubleshooting note

The genotype with the highest number of hierarchical levels could correspond to a contaminant, rather than the genotype with
the highest genome coverage, in a mixed sample.

[image: Mixed subtype result]


	If no positive target is detected, the column will be blank and the qc_message will state that no k-mers/targets were found.




[image: no result]



Average K-mer Coverage

Displays the average coverage of all of the targets/k-mers that were present in the sample.



QC Columns

QC Status and QC message are found in full details under their own section as they are a part of all 3 output files.
This detailed information is found in the Quality_Control section.





Match Results.tab


Fasta File Output Structure:

The following is the scheme for the match_results.tab file For a single Fasta file.
Running raw reads data has slightly different output columns due to the different nature of the data.
The output columns for the match_results.tab file are shown below broken into different charts to allow them
to fit mostly on one page. In the real generated file, they would all found in the same long row. Below, you will
find detailed information for each column.



















	kmername

	Sequence

	is_revcomp

	Contig_id

	Match_index

	Refposition

	Genotype

	is_pos_kmer

	Sample

	File_path

	Scheme

	Scheme_version

	QC_Status

	QC_message



	(Name of Target/K-mer)

	(Corresponding K-mer Sequence)

	(TRUE/FALSE)

	(Name of Contig)

	(Match Position)

	(Match Position in reference)

	(Genotypes in kmername)

	(TRUE/FALSE)

	(Sample Name)

	(File Location)

	(Scheme Name)

	(Scheme Version)

	(PASS/FAIL/WARNING)

	(Corresponding QC message)








Raw Reads FastQ File Output Structure:

Running raw reads files/FastQ files gives slightly different output columns when compared to the Fasta file match_results.tab
output due to the slight differences in the data that each file contains. The overall output for a match_results.tab results output
from a FastQ file looks as such:


















	kmername

	Sequence

	Frequency

	Refposition

	Genotype

	is_pos_kmer

	is_kmer_freq_okay

	File_path

	Sample

	Scheme

	Scheme_version

	QC_Status

	QC_message



	(Name of Target/K-mer)

	(Corresponding K-mer Sequence)

	(Number of exact matches found)

	(Match Position in reference)

	(Genotypes in kmername)

	(TRUE/FALSE)

	(TRUE/FALSE)

	(File Location)

	(Sample Name)

	(Scheme Name)

	(Scheme Version)

	(PASS/FAIL/WARNING)

	(Corresponding QC message)








Detailed Column Information

The detailed information on the meaning of each columns outputs for both files can be found below:


Kmername

This column gives the name of the target/k-mer that matched to the sample. It will match to the name of the k-mer in the fasta file
following the fasta convention as seen in the input section. The k-mers that match the sample give the genotype of the sample



Sequence

The column contains the sequence of the k-mer from the kmername column. This sequence is the 33 bp
fragment that matched somewhere in the sample.



is_revcomp

Is the k-mer found in the forward direction or the reverse direction?


	FALSE - the target k-mer was found from the 5’ to 3’ direction


	TRUE - the target k-mer was found in the 3’ to 5’ direction in the sample






Contig_id

Displays the name of the contig as found in the Fasta file.



Frequency

Displays the exact number of matches found for the k-mer in the raw reads/FastQ file input.



Match_index

Displays the last nucleotide match of a k-mer as its position in the genome.

For example, if the k-mer matched the genome from positions 12312 to 12345, the SNP would be at position 12329
and output of this column would be 12345.



Refposition

Displays the numerical position of the k-mer/k-mers SNP in the reference genome. This information is also found in the
description of the k-mer in the genotyping schemes Fasta file.



Genotype

Shows the consensus genotype of the sample as determined by the analysis.

This column can display a single positive genotype, a list of positive genotypes, or no genotype depending on the results.



is_pos_kmer

Is the k-mer in question a positive k-mer/target for specific genotype?


	TRUE - the positive SNP has been found in the sample


	FALSE - the negative SNP has been found in the sample






is_kmer_freq_okay

Is the frequencey of the k-mer/target within the specified QC parameters (min/max)? For FastQ datasets.


	TRUE - enough of the k-mer has been found in the dataset as specified by the QC parameters


	FALSE - not enough of the k-mer has been found in the dataset as specified by the QC parameters






File path

The location of the input data file/files.



Scheme

The name of the chosen scheme used in the analysis.



Scheme_vers

The version of the chosen scheme used in the analysis.



QC Columns

QC Status and QC message are found in full details under their own section as they are a part of all 3 results files.
This detailed information is found in the Quality_Control section.











Results.tab


Structure:

The results.tab output file is almost exactly the same for all inputs. This file contains the overall
information of the analysis and gives the final results of a biohansel run in more detail then the tech_results.tab file.
The expanded version of all information that can be obtained from this file is as such:























	Sample

	Sequence

	Scheme_vers

	Genotype

	all_genotypes

	kmers_matching_genotype

	are_genotypes_consistent

	inconsistent_genotypes

	n_kmers_matching_all

	n_kmers_matching_all_expected

	n_kmers_matching_positive

	n_kmers_matching_positive_expected

	n_kmers_matching_genotype

	n_kmers_matching_genotype_expected

	File path

	avg_kmer_coverage

	QC status

	QC message



	(Sample Name)

	(Scheme name)

	(Version of Scheme)

	(Genotypes in kmername)

	(Genotypes in all lineages)

	(genotypes that match given k-mers)

	(TRUE/FALSE)

	(TRUE/FALSE)

	(Number of actual matches in sample)

	(Expected positive matches in sample)

	(Number of matches in targeted lineage)

	(Expected matches in targeted lineage)

	(Number of matches in specific sublineage)

	(Expected matches in targeted sublineage)

	(File Location)

	(Average frequency of all k-mers)

	(PASS/FAIL/WARNING)

	Corresponding QC message)







Sample

Provides the names of samples that were run on biohansel



Scheme

The name of the chosen Scheme used in the analysis.



Scheme_Version

The version of the chosen scheme used in the analysis.



Genotype

Shows the consensus genotype of the sample as determined by the analysis.

This column can display a single positive genotype, a list of positive genotypes, or no genotype depending on the results.



All_genotypes

All of the genotypes in all the levels of lineage leading to the final genotype.

[image: Output of all subtypes]



kmers_matching_genotype

Displays the genotype(s) that the most downstream, specific k-mers have matched to. For good, non-mixed results, it should be the
same as the genotype column.



are_genotypes_consistent


	TRUE - the genotypes are consistent as defined.





	Consistency -> All positive k-mers within QC parameters have consistent genotypes in downstream sublineages corresponding to parent genotype.




[image: picture of consistent]

Each k-mer must become more specific to the final genotype while matching all of the previous ones to be considered consistent.


	FALSE - the genotypes are not consistent.






inconsistent_genotypes

If “are_genotypes_consistent” is FALSE, it lists genotypes that are inconsistent to parent.

[image: Output of all subtypes]



n_kmers_matching_all

Counting all of the actual k-mer matches (both positive and negative) that make up each genotype lineage as defined by
the genotyping scheme used/created.

[image: picture of all match]



n_kmers_matching_all_expected

The total number k-mer/target matches expected (both positive and negative) that make up each genotype lineage as defined
by the genotyping scheme used/created.

Every/almost every k-mer defined in the scheme should match somewhere in the sample if the sample is of high quality.

[image: kmers matching all output]



n_kmers_matching_positive

The number of positive matches in the sample from all of the upstream lineages of the output genotype as defined by the genotyping scheme.

[image: picture of positive match]



n_kmers_matching_positive_expected

The expected number of positive matches from all of the upstream lineages of the output genotype as defined by the genotyping scheme.

For a good analysis, this value should match the sample.



n_kmers_matching_genotype

The number of positive matches in the sample sublineage only.

[image: picture of subtype match]



n_kmers_matching_genotype_expected

The expected number of positive matches in the sample sublineage only.



File Path

The file location of the input data.



Avg_kmer_coverage

The average frequency of all k-mers, both positive and negative, that were found in the sample. This output column is
only found for analysis of raw reads FastQ files and it is an indicator that there was a sufficient amount of overlap
in the dataset for the results to be significant.



QC Columns

QC Status and QC message are found in full details under their own section as they are a part of all 3 results files.
This detailed information is found in the Quality_Control section.





Quality_Control








QC Status

Three possibilities can be shown in this column based on the QC analysis described below: QC message


	PASS


	FAIL


	WARNING












QC message

The QC message displayed provides information on what happened in the analysis and where, if there was a warning or fail,
the data can be cleaned up/improved to obtain a passing result.


“Pass”

A pass occurs when there is no errors in the targeted lineage and its corresponding sublineages:

[image: This is an ideal picture of a passed scheme]

Once the QC module is declared as a pass, there is no information in the QC message column displayed.
The result should be considered a valid analysis.









“WARNING: Intermediate Genotype”

Warnings will be triggered if all four following conditions are met:

1st condition: Less than 5% of the k-mers are missing (by default) or more than 95% of the schemes targets are matched
(parameters for this is adjustable prior to running biohansel)

2nd condition: There should be no clash for “+” and “-” targets for the same genome position (above background noise level)

3rd condition: Only a fraction of the k-mers are positive for the final genotype
(”# of k-mers matching genotype expected > # of k-mers matching genotype”)

4th condition: The targets for the final subtype are a mixture of both “+” and “-” BUT do NOT clash for the same positions.









“WARNING: Low Coverage”

If the “Avg k-mer Coverage” is below the parameters given for low coverage (parameters are adjustable) (default min average coverage: 20- fold)

Average coverage calculated from all targets found in the sample (The value is returned to the user)









Error Type 1: Missing kmers

*** The Maximum amount of missing k-mers, either positive or negative, to be allowed before being considered an error/fail.
This amount can be edited based on preference and scheme.

Three possible causes:


	Bacterial scheme does not match target


	Low genome coverage or low quality data


	Range of target coverage extends outside of QC limits (k-mer frequency thresholds default = min:8, max:500)




** To determine which cause, the average coverage depth is returned to the user. The value is calculated based on the
coverage for all k-mers that were above the minumum coverage threshold (indicated by the QC parameters: default value = 8)

[image: Example of Missing Targets]









Error Type 2: Mixed Sample

A mixed sample error is where biohansel is unsure what the final genotype is of the sample due to one of two possible causes:


	biohansel came out with an “inconsistent result” designation


	Position conflict: both “+” and “-” targets are found in the same target genome position above background noise level




A possible solution to this error if the average genome coverage is above 100 is to increase the minimum k-mer threshold to at least
10% of the average genome coverage. This will change the background noise tolerated and potentially allow for a positive result to occur.

[image: Example of Mixed targets]









“Error Type 3: Ambiguous result”

Caused by both conditions met:


	Total matching k-mers is within 5% of the expected value


	3 or more k-mers are missing for the final genotype call (Error 3a)




[image: Example of Inconsistent results]









“Error Type 4: Unconfident/Inconclusive result”

Lineage call is uncertain due to missing targets in downstream sublineage.

[image: Example of Unconfident results]







          

      

      

    

  

    
      
          
            
  
Galaxy Parameters

This section will explain how to use the Galaxy parameters of biohansel to get the most out of your analyses.
The command line is slightly more complicated then Galaxy but also allows more a bit more customization to it.
The command line arguments and parameters that can be changed can be found in the Command-Line section

These are the parameters and their functions using Galaxy. Each of the headers is the name of the section on Galaxy where
the underlying parameters can be changed.


Sequence Data Type

The sequence data type settings in Galaxy allow the user to choose what type of file the analysis will be run on.
Picking a file type listed in the subsections below will give a few additional options. These options relate to how
many files are being analyzed at once and how the data is output. A single file or multiple files can be run with one
execute command. The types of jobs that can be run include:


	A single fasta/fastq file


	Multiple fasta/fastq files to be analyzed separately


	A dataset collection of fasta/fastq files that will generate a single output file




Remember that unlike the command line, you cannot run different file type analyses at once with a single run in Galaxy.


Contigs (FASTA)

When the contigs type of sequence data is chosen, Galaxy allows an input of any fasta file currently in the history being worked from.



Paired-end reads (FASTQ)

If the paired-end reads data type is selected, two fastq files are needed as input for an analysis to be run.
These must have ASCII encoded quality scores. Additionally, the forward and reverse file formats must match.



Single-end reads (FASTQ)

If single-end reads is selected, a single fastq file is required as input



Paired-end reads collection (FASTQ)

With a paired-end reads collection, you can only select that as the input to run biohansel on.




SNP Subtyping Scheme

Under this heading, select the subtyping scheme that corresponds to the sample type that you are running.
If you are running a Heidelberg sample then you would select “Salmonella Heidelberg subtyping scheme” from the drop down menu.
A scheme is necessary for a run and if none is selected, there is no run.

If you select the “specify your own custom scheme”, you will need to input the k-mers
for the scheme you have created as a fasta file. You can also input multiple developed
schemes to run on the input data selected in the Sequence Data Type section.
To do this, click on the small k-mers below where it says “Your biohansel SNP Subtyping Scheme”.

[image: specifying your own subtyping scheme]



Scheme Subtype Metadata Table (Optional)

The Scheme Subtype Metadata Table is an optional input that adds more details to the results files.
It can be left blank or a .tsv or .csv file containing a column called subtype can be added in here. Multiple metadata
tables can be added and linked to multiple analyses or a collection of them can be added so that they come out in a single output file.



K-mer Frequency Thresholds

The parameters found under this column are only needed when running results on raw read fastq files.
They control how much k-mer is needed to be considered acceptable for an analysis.


Min k-mer frequency/coverage

The minimum frequency that all of the k-mers of the chosen subtyping scheme should be found in a raw reads Fastq dataset.
If a k-mer falls below this coverage, it will not be taken into account in the results.

This parameter should be adjusted based on the average genome coverage of the dataset
(or estimated average k-mer coverage output by biohansel). A good min k-mer coverage would be 10% of your estimated genome/k-mer coverage.



Max k-mer frequency/coverage

The maximum frequency that all of the k-mers of the chosen subtyping scheme should be found in a raw reads Fastq dataset.
If a k-mer is above this chosen frequency, it will not be taken into account. Default is 10,000. Make sure that the Max k-mer
frequency is at least 5x more then the average genome coverage of the dataset (or estimated average k-mer coverage output by biohansel).

[image: Quality checking thresholds]




Quality Checking Thresholds

These parameters are used to run the quality control (QC) module that determines if the outcome of biohansel is a PASS or a FAIL.
Changing them allows for greater control on what the program will allow a pass, whether this is more strict or less strict.

[image: k-mer frequency thresholds]


QC: Frequency below this coverage are considered low coverage

This QC threshold determines if the coverage of each of the individual k-mers is enough to be considered adequate or low coverage.
The lower this value is set, the more lax what is considered low coverage is for QC module warning. The default value is 20.
This parameter may be useful for scheme development.



QC: Min number of k-mers missing for Ambiguous Result

This QC threshold determines the minimum number of positive k-mers that can be missed to result in an ambiguous output by biohansel.
The default value is 3. A higher value means that the QC module is more relaxed resulting in less ambiguous results from datasets
that are not as highly covered.



QC: Decimal Proportion of max allowed missing k-mers

This QC threshold determines the maximum number of k-mers allowed to be missing in the target dataset
as a decimal proportion before the QC module determines the outcome to be a failure. The default decimal proportion is 0.05 or 5%.



QC: Decimal Proportion of max allowed missing k-mers for an intermediate subtype

This QC threshold determines the maximum number of k-mers allowed to be missed in the target dataset as a decimal proportion
before the QC module determines that the outcome is a failure due to being an intermediate subtype.
The default decimal proportion is 0.05 which equals 5%.



QC: Overall k-mer coverage below this value will trigger a low coverage warning

This QC threshold is the average k-mer Coverage of an analyzed fastq file which, when the average coverage falls below this number,
a warning is triggered by the QC module saying that the sample is of low coverage. The default is 20.
A lower number will relax the standard and allow sample of lower quantity to pass which may be needed on metagenomic samples.
Doesn’t affect the validity of the biohansel results.

This is meant as a warning that you may want to resequence your sample for more data for other downstream applications.




Developer Options

There is only one developer option available and it is to output JSON files on top of the normal analysis files.
If this option is set to “yes”, there will be six output files, three JSON files and three .tab files.
The JSON files are used to represent analysis details that are not found in the normal files.





          

      

      

    

  

    
      
          
            
  
Command-Line

Here, the arguments needed to run biohansel effectively are displayed. The required and additional arguments
are shown below to see what must be included in a run.


Required

Make sure to be in the directory containing all of the data needed to run a command or that the path to the
input data is put into the command following the argument.


	Genotyping Scheme



	use -s “scheme”









	Output/Results Files (any combination so long as there is at least one specified. Details in Output)



	use -S “filename.tab” | for tech_results.tab


	use -o “filename.tab” | for results.tab


	use -O “filename.tab” | for match_results.tab



	You can also use “.tsv” as the file extension
















	Input data



	use -i <path/to/fasta> | to specify fasta file to analyze


	use -p <path/to/forward_reads> <path/to/reverse_reads> | to analyze paired reads


	use -D <path/to/directory> | to analyze a full directory of data into 1 file













Additional

If any of these arguments are left off of the command used to run biohansel, they will be set to default values for the given analysis.





-M “metadata_scheme.tsv”  –>  Used to input a metadata scheme that follows all requirements


found in input






--force  –>  Forces the existing outputs to be overwritten




--json  –>  Output JSON representation of output files




--min-kmer-freq <#>  –>  Minimum k-mer coverage needed for a raw reads fastq file to be


considered acceptable by the quality control module (default is 8)






--max-kmer-freq <#>  –>  Maximum k-mer coverage for a raw reads fastq file to be considered


acceptable (default is 10,000)






--low-cov-depth-freq <#>  –>  Coverage frequencies of raw read fastq files below this value are


considered as low coverage (default is 20)






--max-missing-kmers <#>  –>  Decimal proportion of maximum allowable missing kmers before


being considered an error (0.0 - 1.0) (default is 0.05 or 5%)






--min-ambiguous-kmers <#>  –>  Minimum number of missing kmers to be considered an ambiguous


result (default is 3)






--low-cov-warning <#>  –>  Overall kmer coverage below this value will trigger a low coverage


warning on raw read fastq files. (default is 20)






--max-intermediate-kmers <#>  –>  Decimal proportion of maximum allowable missing kmers


(0.0 - 1.0) to be considered an intermediate genotype (default is 0.05)






–threads <#_CPUs>  –>  Number of parallel threads used to run the analysis (default = 1)




-v  –>  Verbose: Logs verbosity levels where -v == show warnings and -vv == show debug info




-V  –>  Displays the version of biohansel installed








Hansel Help Command

If you run hansel -h, you will be provided with additional information for most of the commands along with following usage statement:

.





          

      

      

    

  

    
      
          
            
  
Home

Detailed installation instructions for anyone who wants to run biohansel. These instructions are tailored to linux or MacOS
systems where biohansel has been confirmed to work correctly. If installing to the command line, Bioconda is highly suggested
as it shows no issues over the span of many tests.

Pick the way that you want to run biohansel and follow the detailed instructions given on the following pages:

Command line

Galaxy

If errors persist in installation, the suggestion is to try another method. If errors occur in running biohansel,
then check that all inputs are correctly specified, all files are in the correct formats
(fasta/fastq for samples, .tsv for metadata tables), and no other small issues are present (ex. forgetting a column called “subtype”
when adding in metadata).




          

      

      

    

  

    
      
          
            
  
Command Line

There are three ways to install the latest version of biohansel to run analyses through the use of the command line. These instructions have been tested for linux terminal and thus, no comments on the other operating system instructions can be found here at the moment. MAC should be extremely similar once you install Miniconda following the MAC installation steps. biohansel commands have not been tested for the Windows OS terminal.


Biohansel on Miniconda Linux Installation Instructions

Miniconda is a mini version of Anaconda [https://conda.io/projects/conda/en/latest/glossary.html#anaconda-glossary] that includes only conda and its dependencies. If you wish to install Anaconda [https://docs.continuum.io/anaconda/install.html] then follow the steps found on the Anaconda installation instructions page and join back at step 5.

The steps below will be the fully detailed for Linux operating systems. You can find installation guides for Miniconda for the other operating systems at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html


	Download Miniconda - Python 3.7 from Conda’s Download page [https://conda.io/en/latest/miniconda.html]





	Select the correct installer for your operating system (either 64-bit or 32-bit)





	Path to where the miniconda package was downloaded and run the following command:




bash Miniconda-latest-Linux-x86_64.sh





You can use the tab key after typing the first few letters of the file to finish the rest.


	Follow the prompts on the installer screens


	Close and re-open the terminal window to make the changes take effect


	Add BioConda to MiniConda with the following commands in the following order:




conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge






	Create a new environment to run biohansel from. This environment is going to be called “biohansel” but can be whatever you choose. Command:




conda create -n biohansel python=3.6






	Activate the newly created conda environment:




source activate biohansel






	Check that the channels added earlier are properly included in the new environment by repeating the command in step 5. This can be skipped if step 5 went well:




conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge





The output will either be nothing if the channel is re-added, or it will say that the channel is already present. Either output is good.


	Install biohansel and all of its dependencies into this environment:




conda install bio_hansel






	Check that the installation was successful. Running the following command to display the usage statement:




hansel -h






	When you open a new terminal window to run biohansel, remember to activate the environment you set it to before running a job or it will not work:




conda activate biohansel

# Then run the analysis you want to do. Example:
hansel -s heidelberg -o results.tab STR13341





If there are problems running/installing biohansel, check to see if any of the following are are occuring:


	Make sure that that all of the system requirements are met for Miniconda on this page: https://conda.io/projects/conda/en/latest/user-guide/install/index.html#system-requirements


	Check that the right python version/installation is being used. It should be found under the /Miniconda3/bin/python3.6/ directory if installed with Miniconda:




which python






	If the wrong directory or python version is being run by the terminal, then try the following:



	Restart the terminal window and check again


	Use the following commands


alias python=python3
# This will set python 3 as the working python
# Check that this worked with the command:
python --version
# Should print out the version as 3.x.x depending on which version is installed.




















	If using the Fish shell, make sure that you add the following line to your fish.config file if there are problems occuring:




source (conda info --root)/etc/fish/conf.d/conda.fish







Biohansel installation with pip from PyPI

If you have pip and python3 installed already onto your machine, then the following steps can be used to install biohansel. If not, follow along and install them as prompted:


	Make sure that python3 is the active python version and that it is installed onto the machine:




python -V
# This will print the python version used

# If this doesn't output 3.X and instead outputs 2.X, then type:
alias python=python3

python -V
# Now it should output python version as 3.X.

# If not, then python3 may need to be installed with the following:
apt-install python3.7-minimal





Biohansel needs python3 to work correctly. If installed this way, you may need to use the alias command to get the correct version of python active before each run of biohansel.


	Install biohansel with pip. If pip is not installed on your current machine, then follow the installing pip tutorial [https://pip.pypa.io/en/stable/installing/]:




# You can check that pip is installed with the input:
pip

# If pip is installed, then install biohansel with it
pip install bio_hansel

# This will install biohansel along with all of its needed dependencies.






	Check that biohansel has been correctly installed with:




hansel -h





Common problems encountered:


	pip installing biohansel to the wrong python environment. Instead of installing to python 3, it installs to python 2.





	Set the correct path for pip/python to install files





	Make sure the correct version of python is being installed to (v3.x)






Biohansel installation with pip from Github

Use the following command:

pip install git+https://github.com/phac-nml/biohansel.git@master





If that doesn’t work, look at the common problems encountered with pip from PyPI or try the PyPI installation instructions. Both installation methods are extremely similar.





          

      

      

    

  

    
      
          
            
  
Galaxy


Installation Instructions for New Galaxy Users


Requirements


	Unix/Linux or Mac OSX


	Python 2.7






Steps

If you just want biohansel or other programs to run on your own instance of Galaxy, then follow the steps below to download and install Galaxy. If you wish to work on Galaxy development or use it for another purpose other then installing and running Bioinformatic tools, then read more about Galaxys uses [https://galaxyproject.org/admin/get-galaxy/].

For your own instance of Galaxy follow these steps:


	Go to https://galaxyproject.org/admin/get-galaxy/ and for our purposes clone the latest release of Galaxy to a Git repository




cd <repo directory>
# Change to a directory you want to clone Galaxy to

git clone -b release_18.09 https://github.com/galaxyproject/galaxy.git
# As of writing this, the current release of Galaxy is Version 18.09
# You can always update Galaxy or clone the master branch following the instructions
# of the get-galaxy site






	Galaxy will create config files once the server is run for the first time. Now start Galaxy with:




cd galaxy
# Move into the cloned galaxy directory

sh run.sh
# This will run galaxy for the first time should everything be correctly installed.
# It will automatically create all necessary files





Once the start-up is finished, a Galaxy server on the local host will start.


	Galaxy can now be accessed from any web browser at http://localhost:8080 . After starting, Galaxy output will be printed to the terminal window from the created galaxy server.




If any problems have occurred or you want to customize/modify settings, view the Galaxy project’s get Galaxy website [https://galaxyproject.org/admin/get-galaxy/] for greater details and instructions.


	Use Ctrl-C to shutdown Galaxy and then use the following command to add the sample config file:




cp config/galaxy.yml.sample config/galaxy.yml






	Become an Admin so that you may add tools.



	Register with your Galaxy through the register button at the top


	
	Give Admin-user privileges for your login email to the configuration file config/galaxy.yml. Open the file and then under the admin_users: add a list of comma separated emails.

	
	Make sure to uncomment (remove the #) the admin_users line



















[image: config.yml file showing admin access]


	Restart Galaxy on the terminal again with Ctrl-C and the start command:




sh run.sh






	Now to install biohansel, continue following along here or go to the Galaxy Admin tab at the top bar:




[image: Bar of a Galaxy admin]


	On the side bar locate install new tools and click on it to show the following page:




[image: Adding tools page]


	Click on the button and search the Valid Repositories for biohansel or bio_hansel. Currently, biohansel is the more up to date version available but any Galaxy version can be found here.




[image: Search resultss]


	Click on biohansel and a drop down menu will appear allowing you to preview/install. Click on this to be redirected to a page that will let you browse the repository for biohansel, or install it to Galaxy.


	Once you click on Install to Galaxy, you will be brought to a page to confirm the installation and the location that the tool can be found under in the toolbar. Set these to your preferences and then click install.


	Additional information on installing tools can be found on the Galaxy website installing tools tutorial [https://galaxyproject.org/admin/tools/add-tool-from-toolshed-tutorial/].




link to biohansel repository [https://toolshed.g2.bx.psu.edu/view/nml/biohansel/ba6a0af656a6]




Installation Instructions for Galaxy Admins

Follow along steps 7 - 11 of the previous section.

For additional information, see the Galaxy website installing tools tutorial [https://galaxyproject.org/admin/tools/add-tool-from-toolshed-tutorial/].





          

      

      

    

  

    
      
          
            
  
Versions


Galaxy versions

Using Galaxy, you can easily install older versions of biohansel to your own Galaxy workspace. To do this, follow the Galaxy Installation Page instructions to get Galaxy to run on your local machine. Once Galaxy is installed and you make yourself an admin, you can install any other versions of biohansel released to Galaxy with the following:


	Click on the Admin button on the top bar to be brought to the Admin page.


	On the Admin page, on the left side bar under “Tool Management”, click on Install new tools to be brought to the “Accessible Galaxy tool sheds”.


	Once on this page, click the arrow on the “Galaxy Main Tool Shed” button and then click on the “Browse valid repositories” option.




[image: Shows where to click for the repos]


	Search the valid repos for biohansel or bio_hansel. Each has different versions that can be installed.





	biohansel can install versions from 2018-11-05 to present


	bio_hansel can install versions from 2018-05-09 to 2017-09-27




Once you know what version you want, click on the “Preview and install” button after clicking the arrow on the biohansel button.

[image: Click here to get to the installation page to choose your version.]


	Choose the version you wish to install with the drop down menu and then click “install to Galaxy” in the top left corner.




[image: Click here to get to the installation page to choose your version.]


	Confirm the installation and then the version of biohansel specified will be installed into your local Galaxy








          

      

      

    

  

    
      
          
            
  
Legal

Copyright Government of Canada 2017

Written by: National Microbiology Laboratory, Public Health Agency of Canada

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this work except in compliance with the License. You may obtain a copy of the
License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
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(bichansel) dhole@phac5018125:~$ hansel -h
usage: hansel [-h] [-s SCHEME] [--scheme-nane SCHEME NAME]

[-H SCHEME _METADATA] [-p forward_reads reverse reads]

[-i fasts_path genone_nane] [-D TNPUT_DIRECTORY]

[-0 QUTPUT_SUMMARY] [-0 OUTPUT_KMER_RESULTS]

[-5 QUTPUT_SIMPLE_SuMARY] [--Force] [--3son]

-nin-kner-freq AIN KMER_FREQ] [--nax-kner-freq MAX_KAER_FREQ]

~Low-cov-depth-freq LOW_COV_DEPTH_FREQ]
-rax-issing-kners AX NISSING KMERS]
-rin-anbiguous-kners NIN AMBTGIOUS KHERS]
~Low-cov-warning LOW_COV_MARNING]
-ax-internediate-kners AAX_INTERMEDIATE_KNERS]
[--nax-degenerate-kners HAX_DEGENERATE_KNERS] [-t THREADS] [-v]
%0
[FIF..]

Subtype microbial genomes using WV targeting k-ner subtyping schenes.
Includes schenes for Salmonella enterica spp. enterica serovar Heidelberg, Enteritidis, Typhi, and Typhinuriun subtyping. Also includes a Mycobacteriun Tuberculosis schene.

veveloped by Genevieve Labbé, Janes Robertson, Peter Kruczkiewicz, Marisa Rankin, Matthew Copez, Chad R. Laing, Philip Mabon, Kin Ziebell, Aleisha R. Reiner, Lorelee Tschetter, Gary Van Domselsar, Sadjis Bekal, Kisberley A. MacDonald, Linda Hoang, Linda Chui, Danielle Daignault, Durds Slavic, Frank Pollari, E. Jane
parelley, David Son, Darian Hole, Philip Mabon, Elissa Giang, Lok Kan Lee, Jonathan offat, Marisa Rankin, Joanne Mackinnon, Roger Johnson, John H.E. Nash.

r
r
r
r
r
r

positional arguments:
F Input genone FASTA/FASTQ files (can be Gripped)

optional arguments:
“h, --help show this help nessage and exit
-/ SCHEME, --schene SCHENE
Schene to use for subtyping (butlt-in: “heidelberg”,
Centeritidis”, “typhi”, “typhinuriun’,
“tb_speciation™; OR user-specified:
path/to/user/schene)
~-schene-nane SCHENE_NAME
Custon user-specified SNP substyping schene nane
M SCHENE_METADATA, --schene-netadata SCHEME_METADATA
Schene subtype metadata table (CSV or tab-delinited
format; must contain “subtype” column)
“p forward_reads reverse_reads, --paired-reads forward_reads reverse_reads
FASTQ paired-end reads
-1 fasta_path genome_nane, --input-fasta-genone-nane fasta_path genome_nane
fasta file path to genome nare pair
-D INPUT_DIRECTORY, --input-directory INPUT_DIRECTORY
directory of input fasta files (.fastal.fal.fna) o
FASTO files (paired FASTQ should have sane basenane
with " \d\.(fastq|fa)" postfix to be automatically
paired) (files can be Gripped)
“0 OUTPUT_SUMMARY, --output-Sunmary OUTPUT_SUMMARY
Subtyping sumary output path (tab-deliited)
-0 OUTPUT_KMER_RESULTS, --output-kner-results OUTPUT_KNER_RESULTS
Subtyping kner matching output path (tab-delinited)
- OUTPUT_SIMPLE_SUMMARY, --0utput-sinple-sunnary OUTPUT_STMPLE_SUMMARY
Subtyping sinple sumary output path
force Force existing output files to be overwritten
3son Output JSON representation of output files
min-kner-freq MIN KNER_FREQ
¥in k-ner freq/coverage
--max-kner-freq MAX_KMER_FREQ
Max k-ner freq/coverage
-Low-cov-depth-freq LOK_COV_DEPTH FREQ
Frequencies below this coverage are considered low
coverage
--nax-nissing-kners MAX_MISSING KAERS
Decinal proportion of naxinun allowsble missing keers
before being considered an error. (8.0 - 1.0)
-min-anbiguous-kners MIN AMBIGUOUS_KNERS
Mininun nunber of missing kners to be considered an
anbiguous result
~Low-cov-warning LOK_COU_WARNING
Overall kner coverage below this value will trigger 3
Low coverage warning
--nax-internediate-kners MAX_INTERMEDIATE_KAERS
Decinal proportion of naxinun allowsble missing keers
to be considered an internediate subtype. (6.6 - 1.0)
--nax-degenerate-kners MAX_DEGENERATE_KMERS
Maxinun number of schene k-ners allowed before
quitting with 2 usage warning. Default is 100000
-t THREADS, --threads THREADS
Nusber of parallel threads to run analysis (default=1)

v, ~-verbose Logging verbosity level (-v == show warnings; -vwv
show debug info)
-, --version show progran’s version nusber and exit

(biohansel) dholegphacs018125:-5.
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